
- 2025-01-21 09:29:42超快二維光譜
- 超快二維光譜利用超短脈沖激光研究物質(zhì)在飛秒至皮秒時間尺度上的電子結(jié)構(gòu)和動力學(xué)變化。它通過測量不同時間延遲下的二維光譜信號,揭示物質(zhì)內(nèi)部電子的超快過程。該技術(shù)應(yīng)用于化學(xué)、物理、生物等領(lǐng)域,可研究能量轉(zhuǎn)移、電荷分離等超快現(xiàn)象,有助于理解復(fù)雜體系的電子動態(tài)行為,推動相關(guān)科學(xué)研究的發(fā)展。
資源:5163個 瀏覽:15次展開
超快二維光譜相關(guān)內(nèi)容
超快二維光譜文章
超快二維光譜產(chǎn)品
產(chǎn)品名稱
所在地
價格
供應(yīng)商
咨詢
- 魔技納米超快激光微納加工中心
- 國內(nèi) 山東
- 面議
-
魔技納米科技有限公司
售全國
- 我要詢價 聯(lián)系方式
- 超快PMT
- 國外 歐洲
- 面議
-
北京先鋒泰坦科技有限公司
售全國
- 我要詢價 聯(lián)系方式
- 超快探測器 UPD 超快光電探測器
- 國內(nèi) 上海
- ¥25000
-
上海屹持光電技術(shù)有限公司
售全國
- 我要詢價 聯(lián)系方式
- 超快探測器 UPD 超快光電探測器
- 國外 歐洲
- 面議
-
上海屹持光電技術(shù)有限公司
售全國
- 我要詢價 聯(lián)系方式
- 緊湊型超快激光放大器Phidia-C
- 國外 美洲
- 面議
-
北京先鋒泰坦科技有限公司
售全國
- 我要詢價 聯(lián)系方式
超快二維光譜問答
- 2023-05-18 16:59:34全共線多功能超快光譜儀與高精度激光掃描顯微鏡,二維材料與超快
- 全共線多功能超快光譜儀BIGFOOT MONSTR Sense Technologies是由密歇根大學(xué)研究人員成立的科研設(shè)備制造公司。該公司致力于研發(fā)為半導(dǎo)體研究應(yīng)用而優(yōu)化的超快光譜儀和顯微鏡,突破性的技術(shù)可將光學(xué)器件和射頻電子器件耦合在一起,以穩(wěn)健的方式測量具有干涉精度的光學(xué)信號,真正實現(xiàn)一套設(shè)備、一束激光、多種功能。圖1. 全共線多功能超快光譜儀BIGFOOT 全共線多功能超快光譜儀BIGFOOT不僅兼具共振和非共振超快光譜探測,還可以兼容瞬態(tài)吸收光譜(Transient absorption (TAS))、相干拉曼光譜(Coherent Raman Spectroscopy (CRS))、多維相干光譜探測(Multidimensional Coherent Spectroscopy (MDCS))。開創(chuàng)性的全共線光路設(shè)計,使其可以與該公司研發(fā)的高精度激光掃描顯微鏡(NESSIE)聯(lián)用,實現(xiàn)超高分辨超快光譜顯微成像。全共線多功能超快光譜儀的開發(fā)也充分考慮了用戶的使用體驗,系統(tǒng)軟件可自動調(diào)控參數(shù),光路自動對齊、無需校正等特點都使得它簡單易用。全共線多功能超快光譜儀BIGFOOT主要技術(shù)參數(shù):高精度激光掃描顯微鏡NESSIE MONSTR Sense Technologies的高精度激光掃描顯微鏡NESSIE可用入射激光快速掃描樣品,在幾秒鐘內(nèi)就能獲得高光譜圖像。該設(shè)備可適配不同高度的樣品臺和低溫光學(xué)恒溫器,物鏡高度最多可變化5英寸,大樣品尺寸同樣適用。NESSIE顯微鏡是具有獨立功能,可以與幾乎任何基于激光測量與高分辨率成像的設(shè)備集成在一起,也非常適合與該公司研發(fā)的全共線多功能超快光譜儀集成。 圖2. 高精度激光掃描顯微鏡NESSIE 高精度激光掃描顯微鏡-NESSIE的輸入信號為單個激光光束,輸出信號為樣品探測點收集的單個反向傳播光束,這樣的光路設(shè)計確保了反傳播信號在掃描圖像時不會相對于輸入光束漂移,因而非常適用于激光的實驗中的成像顯微鏡系統(tǒng)。 圖3. 使用NESSIE在室溫下測量的GaAs量子阱的圖像。a) 用相機(jī)測量的白光圖像。b) 用調(diào)諧到GaAs帶隙的80MHz激光器(5mW激光輸出)進(jìn)行激光掃描線性反射率測量。c) 同時測量的激光掃描四波混頻圖像揭示了影響GaAs層的亞表面缺陷 BIGFOOT+NESSIE應(yīng)用案例:1. 高精度激光掃描顯微鏡用于材料表征 美國密歇根大學(xué)課題組通過使用基于非線性四波混頻(FWM)技術(shù)的多維相干光譜MDCS測量先進(jìn)材料的非線性響應(yīng),利用激子退相和激子壽命來評估先進(jìn)材料的質(zhì)量。課題組使用通過化學(xué)氣相沉積生長的WSe2單分子層作為一個典型的例子來證明這些功能。研究表明,提取材料參數(shù),如FWM強(qiáng)度、去相時間、激發(fā)態(tài)壽命和暗/局部態(tài)分布,比目前普遍的技術(shù),包括白光顯微鏡和線性微反射光譜學(xué),可以更準(zhǔn)確地評估樣品的質(zhì)量。在室溫下實時使用超快非線性成像具有對先進(jìn)材料和其他材料的快速原位樣品表征的潛力。圖4. (a)通過擬合時域單指數(shù)衰減得到的樣本的去相時間圖,在圖(a)中用三角形標(biāo)記的選定樣本點處的FWM振幅去相曲線【參考】Eric Martin, et al; Rapid multiplex ultrafast nonlinear microscopy for material characterization. Optics Express 30, 45008 (2022). 2.二維材料中激子相互作用和耦合的成像研究 過渡金屬二鹵代化合物(TMDs)是量子信息科學(xué)和相關(guān)器件領(lǐng)域非常有潛力的材料。在TMD單分子層中,去相時間和非均勻性是任何量子信息應(yīng)用的關(guān)鍵參數(shù)。在TMD異質(zhì)結(jié)構(gòu)中,耦合強(qiáng)度和層間激子壽命也是值得關(guān)注的參數(shù)。通常,TMD材料研究中的許多演示只能在樣本上的特定點實現(xiàn),這對應(yīng)用的可拓展性提出了挑戰(zhàn)。美國密歇根大學(xué)課題組使用了多維相干成像光譜(Multi-dimensional coherent spectroscopy, 簡稱MDCS),闡明了MoSe2單分子層的基礎(chǔ)物理性質(zhì)——包括去相、不均勻性和應(yīng)變,并確定了量子信息的應(yīng)用前景。此外,課題組將同樣的技術(shù)應(yīng)用于MoSe2/WSe2異質(zhì)結(jié)構(gòu)研究。盡管存在顯著的應(yīng)變和電介質(zhì)環(huán)境變化,但相干和非相干耦合和層間激子壽命在整個樣品中大多是穩(wěn)健的。圖5. (a)hBN封裝的MoSe2/WSe2異質(zhì)結(jié)構(gòu)的白光圖像。(b)MoSe2/WSe2異質(zhì)結(jié)構(gòu)在圖(a)中的標(biāo)記的三個不同樣本點處的低功率低溫MDCS光譜。(c)圖(b)中所示的四個峰值的FWM(Four-Wave Mixing)四波混頻積分圖。(d)MoSe2/WSe2異質(zhì)結(jié)構(gòu)上的MoSe2共振能量圖。(e)MoSe2/WSe2異質(zhì)結(jié)構(gòu)的WSe2共振能量圖。(f)所有采樣點的MoSe2共振能量與WSe2共振能量【參考】Eric Martin, et al; Imaging dynamic exciton interactions and coupling in transition metal dichalcogenides, J. Chem. Phys. 156, 214704 (2022) 3. 摻雜MoSe2單層中吸引和排斥極化子的量子動力學(xué)研究 當(dāng)可移動的雜質(zhì)被引入并耦合到費(fèi)米海時,就形成了被稱為費(fèi)米極化子的新準(zhǔn)粒子。費(fèi)米極化子問題有兩個有趣但截然不同的機(jī)制: (i)吸引極化子(AP)分支與配對現(xiàn)象有關(guān),跨越從BCS超流到分子的玻色-愛因斯坦凝聚;(ii)排斥分支(RP),這是斯通納流動鐵磁性的物理基礎(chǔ)。二維系統(tǒng)中的費(fèi)米極化子的研究中,許多關(guān)于其性質(zhì)的問題和爭論仍然存在。黃迪教授課題組使用了Monstr Sense公司的全共線多功能超快光譜儀BIGFOOT研究了摻雜的MoSe2單分子層。課題組發(fā)現(xiàn)觀測到的AP-RP能量分裂和吸引極化子的量子動力學(xué)與極化子理論的預(yù)測一致。隨著摻雜密度的增加,吸引極化子的量子退相保持不變,表明準(zhǔn)粒子穩(wěn)定,而排斥極化子的退相率幾乎呈二次增長。費(fèi)米極化子的動力學(xué)對于理解導(dǎo)致其形成的成對和磁不穩(wěn)定性至關(guān)重要。圖6. 單層MoSe2在不同柵極電壓下的單量子重相位振幅譜【參考】Di HUANG, et al; Quantum Dynamics of Attractive and Repulsive Polarons in a Doped MoSe2 Monolayer, PHYSICAL REVIEW X 13, 011029 (2023)
134人看過
- 2023-05-26 11:43:55全共線多功能超快光譜儀與高精度激光掃描顯微鏡,二維材料與超快光學(xué)實驗必備!
- 全共線多功能超快光譜儀BIGFOOTMONSTR Sense Technologies是由密歇根大學(xué)研究人員成立的科研設(shè)備制造公司。該公司致力于研發(fā)為半導(dǎo)體研究應(yīng)用而優(yōu)化的超快光譜儀和顯微鏡,突破性的技術(shù)可將光學(xué)器件和射頻電子器件耦合在一起,以穩(wěn)健的方式測量具有干涉精度的光學(xué)信號,真正實現(xiàn)一套設(shè)備、一束激光、多種功能。圖1. 全共線多功能超快光譜儀BIGFOOT全共線多功能超快光譜儀BIGFOOT不僅兼具共振和非共振超快光譜探測,還可以兼容瞬態(tài)吸收光譜(Transient absorption (TAS))、相干拉曼光譜(Coherent Raman Spectroscopy (CRS))、多維相干光譜探測(Multidimensional Coherent Spectroscopy (MDCS))。開創(chuàng)性的全共線光路設(shè)計,使其可以與該公司研發(fā)的高精度激光掃描顯微鏡(NESSIE)聯(lián)用,實現(xiàn)超高分辨超快光譜顯微成像。全共線多功能超快光譜儀的開發(fā)也充分考慮了用戶的使用體驗,系統(tǒng)軟件可自動調(diào)控參數(shù),光路自動對齊、無需校正等特點都使得它簡單易用。全共線多功能超快光譜儀BIGFOOT主要技術(shù)參數(shù):若您對設(shè)備有任何問題,歡迎掃碼咨詢!高精度激光掃描顯微鏡NESSIEMONSTR Sense Technologies的高精度激光掃描顯微鏡NESSIE可用入射激光快速掃描樣品,在幾秒鐘內(nèi)就能獲得高光譜圖像。該設(shè)備可適配不同高度的樣品臺和低溫光學(xué)恒溫器,物鏡高度最多可變化5英寸,大樣品尺寸同樣適用。NESSIE顯微鏡是具有獨立功能,可以與幾乎任何基于激光測量與高分辨率成像的設(shè)備集成在一起,也非常適合與該公司研發(fā)的全共線多功能超快光譜儀集成。圖2. 高精度激光掃描顯微鏡NESSIE高精度激光掃描顯微鏡-NESSIE的輸入信號為單個激光光束,輸出信號為樣品探測點收集的單個反向傳播光束,這樣的光路設(shè)計確保了反傳播信號在掃描圖像時不會相對于輸入光束漂移,因而非常適用于激光的實驗中的成像顯微鏡系統(tǒng)。圖3. 使用NESSIE在室溫下測量的GaAs量子阱的圖像。a) 用相機(jī)測量的白光圖像。b) 用調(diào)諧到GaAs帶隙的80MHz激光器(5mW激光輸出)進(jìn)行激光掃描線性反射率測量。c) 同時測量的激光掃描四波混頻圖像揭示了影響GaAs層的亞表面缺陷若您對設(shè)備有任何問題,歡迎掃碼咨詢!BIGFOOT+NESSIE應(yīng)用案例:01高精度激光掃描顯微鏡用于材料表征美國密歇根大學(xué)課題組通過使用基于非線性四波混頻(FWM)技術(shù)的多維相干光譜MDCS測量先進(jìn)材料的非線性響應(yīng),利用激子退相和激子壽命來評估先進(jìn)材料的質(zhì)量。課題組使用通過化學(xué)氣相沉積生長的WSe2單分子層作為一個典型的例子來證明這些功能。研究表明,提取材料參數(shù),如FWM強(qiáng)度、去相時間、激發(fā)態(tài)壽命和暗/局部態(tài)分布,比目前普遍的技術(shù),包括白光顯微鏡和線性微反射光譜學(xué),可以更準(zhǔn)確地評估樣品的質(zhì)量。在室溫下實時使用超快非線性成像具有對先進(jìn)材料和其他材料的快速原位樣品表征的潛力。圖4. (a)通過擬合時域單指數(shù)衰減得到的樣本的去相時間圖,在圖(a)中用三角形標(biāo)記的選定樣本點處的FWM振幅去相曲線【參考】Eric Martin, et al; Rapid multiplex ultrafast nonlinear microscopy for material characterization. Optics Express 30, 45008 (2022).02二維材料中激子相互作用和耦合的成像研究過渡金屬二鹵代化合物(TMDs)是量子信息科學(xué)和相關(guān)器件領(lǐng)域非常有潛力的材料。在TMD單分子層中,去相時間和非均勻性是任何量子信息應(yīng)用的關(guān)鍵參數(shù)。在TMD異質(zhì)結(jié)構(gòu)中,耦合強(qiáng)度和層間激子壽命也是值得關(guān)注的參數(shù)。通常,TMD材料研究中的許多演示只能在樣本上的特定點實現(xiàn),這對應(yīng)用的可拓展性提出了挑戰(zhàn)。美國密歇根大學(xué)課題組使用了多維相干成像光譜(Multi-dimensional coherent spectroscopy, 簡稱MDCS),闡明了MoSe2單分子層的基礎(chǔ)物理性質(zhì)——包括去相、不均勻性和應(yīng)變,并確定了量子信息的應(yīng)用前景。此外,課題組將同樣的技術(shù)應(yīng)用于MoSe2/WSe2異質(zhì)結(jié)構(gòu)研究。盡管存在顯著的應(yīng)變和電介質(zhì)環(huán)境變化,但相干和非相干耦合和層間激子壽命在整個樣品中大多是穩(wěn)健的。圖5. (a)hBN封裝的MoSe2/WSe2異質(zhì)結(jié)構(gòu)的白光圖像。(b)MoSe2/WSe2異質(zhì)結(jié)構(gòu)在圖(a)中的標(biāo)記的三個不同樣本點處的低功率低溫MDCS光譜。(c)圖(b)中所示的四個峰值的FWM(Four-Wave Mixing)四波混頻積分圖。(d)MoSe2/WSe2異質(zhì)結(jié)構(gòu)上的MoSe2共振能量圖。(e)MoSe2/WSe2異質(zhì)結(jié)構(gòu)的WSe2共振能量圖。(f)所有采樣點的MoSe2共振能量與WSe2共振能量【參考】Eric Martin, et al; Imaging dynamic exciton interactions and coupling in transition metal dichalcogenides, J. Chem. Phys. 156, 214704 (2022)03摻雜MoSe2單層中吸引和排斥極化子的量子動力學(xué)研究當(dāng)可移動的雜質(zhì)被引入并耦合到費(fèi)米海時,就形成了被稱為費(fèi)米極化子的新準(zhǔn)粒子。費(fèi)米極化子問題有兩個有趣但截然不同的機(jī)制:(i)吸引極化子(AP)分支與配對現(xiàn)象有關(guān),跨越從BCS超流到分子的玻色-愛因斯坦凝聚;(ii)排斥分支(RP),這是斯通納流動鐵磁性的物理基礎(chǔ)。二維系統(tǒng)中的費(fèi)米極化子的研究中,許多關(guān)于其性質(zhì)的問題和爭論仍然存在。美國德克薩斯大學(xué)奧斯汀分校李曉勤教授課題組使用了Monstr Sense公司的全共線多功能超快光譜儀BIGFOOT研究了摻雜的MoSe2單分子層。課題組發(fā)現(xiàn)觀測到的AP-RP能量分裂和吸引極化子的量子動力學(xué)與極化子理論的預(yù)測一致。隨著摻雜密度的增加,吸引極化子的量子退相保持不變,表明準(zhǔn)粒子穩(wěn)定,而排斥極化子的退相率幾乎呈二次增長。費(fèi)米極化子的動力學(xué)研究對于理解導(dǎo)致其形成的配對和磁不穩(wěn)定性至關(guān)重要。圖6. 單層MoSe2在不同柵極電壓下的單量子重相位振幅譜【參考】Di HUANG, et al; Quantum Dynamics of Attractive and Repulsive Polarons in a Doped MoSe2 Monolayer, PHYSICAL REVIEW X 13, 011029 (2023)若您對設(shè)備有任何問題,歡迎掃碼咨詢!
139人看過
- 2022-11-29 10:21:21動力電池應(yīng)用 | 超快充(XFC)要求及開發(fā)策略
- 近來,盡管動力電池快充技術(shù)在快速發(fā)展,但充電時間,效率和壽命焦慮依然是全 球范圍內(nèi)使用電動車的主要焦慮。鋰離子電池以高能量密度和長壽命成為電動車的主要能源。當(dāng)前,有幾種方式來控制快充條件下的電池健康狀態(tài)。本文提出了充電協(xié)議的清晰分類,將快充協(xié)議分為功率管理協(xié)議,依賴于對電流,電壓和電池溫度控制的熱管理協(xié)議,以及依賴于鋰離子電池材料物理修飾和化學(xué)結(jié)構(gòu)的材料層面的充電協(xié)議。并分析了每種快充協(xié)議的要求,優(yōu)勢和劣勢。Fig 1 電動汽車(EV)研究路線圖鋰離子電池不同層級對快充的影響材料-電極-電池層級對快充的影響鋰離子電池快充協(xié)議快充協(xié)議的目的是降低充電時間,優(yōu)化效率和循環(huán)壽命,降低充電損失。消除大倍率充電和深度放電所導(dǎo)致的活性物質(zhì)損失,電極表面的SEI膜重整,內(nèi)部溫度變化和減小容量損失。Fig 2 鋰離子電池主要快充充電協(xié)議類型Fig 3主要快充協(xié)議的優(yōu)勢及劣勢 恒電流恒電位充電協(xié)議CC-CV 作為傳統(tǒng)的充電協(xié)議,其示意圖如Fig 4 所示,即恒電流充到指定電位后,在截止電壓下持續(xù)恒壓充電至電流降低為0.1C 或0.01 C。CC-CV的主要問題是充電時間較長,且CV恒壓過程會導(dǎo)致電池內(nèi)部發(fā)生化學(xué)反應(yīng)。Fig 4 恒電流-恒電位充電(CC-CV)示意圖多步恒電流(MCC) 充電協(xié)議種類Fig 5 多步恒電流(MCC) 充電協(xié)議種類(a) 充電電流多步變換(b) 混合技術(shù)(HT) (c) 條件隨機(jī)變化技術(shù) (CRT)(d) 多步恒電流超快充技術(shù) (ML MCC-CV)MCC充電協(xié)議是通過多步的變換的恒電流進(jìn)行充電,作為目前最 具潛力的超快充技術(shù),有利于縮短充電時間,同時降低電池的衰減和能量損失,并提高效率,降低產(chǎn)生的熱,避免析鋰和過充等,但是,MCC充電協(xié)議需要對電池內(nèi)部的電路進(jìn)行全面準(zhǔn)確評估后才能有效進(jìn)行開發(fā)。因此,MCC的開發(fā)需要直流和交流阻抗技術(shù)組合使用。熱管理協(xié)議Fig 6 熱管理協(xié)議恒溫-恒壓充電協(xié)議示意圖熱管理充電協(xié)議依賴于對環(huán)境溫度和電池溫度的控制,溫度作為影響電池老化非常重要的因素, 一種新的快充協(xié)議基于恒溫很恒壓(CT-CV) 如Fig 所示。CTCV基于施加2C電流,然后電流指數(shù)衰減至1C ,當(dāng)電壓到達(dá)4.2V時,電流開始衰減至0.1C。為了維持溫度恒定,采用PID進(jìn)行溫度控制。脈沖電流充電協(xié)議(PCC)Fig 7 脈沖充電電流示意圖Fig 8 脈沖電流充電協(xié)議(a) 標(biāo)準(zhǔn)協(xié)議-固定占空比(b) 標(biāo)準(zhǔn)協(xié)議-變化占空比(c) 標(biāo)準(zhǔn)協(xié)議-衰減電流(d) 標(biāo)準(zhǔn)協(xié)議高-低電流變化(e) 不同的電壓脈沖PCC 協(xié)議依賴于控制負(fù)載的循環(huán),頻率和充電脈沖的幅值等,PCC有利于縮短充電時間,低溫條件下加熱電池,抑 制鋰析出,增加功率轉(zhuǎn)換,有利于消除濃差極化。缺點是控制器要求極其復(fù)雜,難度很高。結(jié)論經(jīng)過以上分析,功率控制協(xié)議,由于充電時間短,發(fā)熱量低,效率高,避免鋰析出等優(yōu)勢,成為目前鋰離子電池快充最 具潛力的方法之一,由于其波形的復(fù)雜性,對于溫度的監(jiān)測,析鋰的有效評價等以及鋰離子電池內(nèi)部等效電路的全面分析,對于所使用的開發(fā)設(shè)備提出巨大挑戰(zhàn)。多步電流法及脈沖電流快充協(xié)議,測試設(shè)備需要具備以下能力。參考文獻(xiàn)1. A Review of Various Fast Charging Power and Thermal Protocols for Electric Vehicles Represented by Lithium-Ion Battery Systems,Future Transp. 2022, 2, 281–299.https://doi.org/10.3390/futuretransp20100152. Detection of Lithium Plating in Li-Ion Cell Anodes Using Realistic Automotive Fast-Charge Profiles, Batteries 2021, 7, 463. Fast Charging of Lithium-Ion Batteries: A Review of Materials Aspects, Adv. Energy Mater.2021, 11, 2101126, DOI: 10.1002/aenm.202101126
178人看過
- 2022-11-29 10:31:15超快充(XFC)應(yīng)用 | 三電極動態(tài)EIS解鎖電荷轉(zhuǎn)移限制
- 以鋰離子電池作為動力的電動車的充電時間,極大的限制了電動車的發(fā)展。因此,寄希望于極速快充(XFC)能夠在10-15分鐘內(nèi)實現(xiàn)充電0-80% SOC。由于離子傳輸?shù)南拗坪臀鲣嚨娘L(fēng)險,這對目前采用石墨(Gr)基負(fù)極和過渡金屬氧化物正極的鋰離子電池(LIBs)提出了巨大的挑戰(zhàn)。通常認(rèn)為,充電過程涉及正負(fù)極材料或電解質(zhì)中的離子傳輸,和固液界面的電荷傳輸。同時大量的文獻(xiàn)認(rèn)為,離子在充滿電解質(zhì)的電極孔隙或電極顆粒內(nèi)部的擴(kuò)散是快速充電過程中的限速步驟,特別是在較高負(fù)載(>3 mAh cm-2)的高比能量鋰離子電池。但難以直接觀測界面結(jié)構(gòu)和離子傳輸機(jī)制,因此很難監(jiān)測跨越電極-電解質(zhì)界面的電荷轉(zhuǎn)移?;谝陨蠁栴},清華大學(xué)張強(qiáng)教授團(tuán)隊,采用紐扣電池三電極體系,利用輸力強(qiáng)1470E/1455輔助分壓,進(jìn)行了動態(tài)EIS及同步正負(fù)極阻抗監(jiān)測,結(jié)果表明,快速的電荷轉(zhuǎn)移速率對于實現(xiàn)不同尺寸材料的高比能量非常重要,這使得對之前傳質(zhì)過程是快充主要速率限制的假設(shè)產(chǎn)生了新的認(rèn)識。Fig 1 . 紐扣電池中的三電極示意圖A) 鋰參比電極是通過在銅線尖 端附加一小片鋰箔制成的B) 紐扣三電極由工作電極,Li參比電極,兩層隔膜,鋰片做對電極構(gòu)成三明治結(jié)構(gòu) Fig 2 動態(tài)EIS用于研究電極界面動力學(xué)A) 動態(tài)交流阻抗(DEIS)的電壓和電流曲線B) 由DEIS獲得的典型Nyquist曲線,石墨負(fù)極對參比和NCA正極對參比,等效電路分別進(jìn)行擬合Fig3 NAC正極在充電過程中不同SoC下的NCA曲線。直流電流為0.3C,GEIS電流擾動為0.03C然而,除了以前專注于單電極的研究,圍繞著界面電荷轉(zhuǎn)移是否決定了鋰離子全電池的快速充電能力,如果是限制步驟,那是如何限制的,仍然然存在很大爭議。因此,三電極動態(tài)EIS提供了一種有效的思路。Fig 4 石墨負(fù)極在充電過程中不同SoC下,動態(tài)GEIS測試 DC電流0.25 C ,交流振幅為0.025 C.結(jié)論使用動態(tài)交流阻抗(DEIS)對三電極中正負(fù)極電荷轉(zhuǎn)移動力學(xué)進(jìn)行了量化,不同于傳統(tǒng)穩(wěn)態(tài)EIS, DEIS結(jié)合三電極可以獨立提取電池中正極或者負(fù)極的反應(yīng)動力學(xué)。此外,在不同的電解質(zhì)條件下,EC/DMC LiPF6(20.6 Ohm)與 EC/DMC LiTFSI (9.3Ohm)相比,NCA在不同的SoC下Rct減半。通過改進(jìn)的電解質(zhì),F(xiàn)EC/DMC LiPF6,加速了鋰離子的去溶劑化,在快充條件下表現(xiàn)出更小的極化。參考文獻(xiàn)1. Unlocking Charge Transfer Limitations for Extreme Fast Charging of Li-Ion Batteries,Angewandte Chemie International Edition ( IF 16.823 ) Pub Date : 2022-11-16 , DOI: 10.1002/anie.202214828, Yu-Xing Yao, Xiang Chen, Nan Yao, Jin-Hui Gao, Gang Xu, Jun-Fan Ding, Chun-Liang Song, Wen-Long Cai, Chong Yan, Qiang Zhang
174人看過
- 2022-11-24 10:56:21超快充(XFC)應(yīng)用 | 三電極動態(tài)EIS解鎖電荷轉(zhuǎn)移限制
- 以鋰離子電池作為動力的電動車的充電時間,極大的限制了電動車的發(fā)展。因此,寄希望于極速快充(XFC)能夠在10-15分鐘內(nèi)實現(xiàn)充電0-80% SOC。由于離子傳輸?shù)南拗坪臀鲣嚨娘L(fēng)險,這對目前采用石墨(Gr)基負(fù)極和過渡金屬氧化物正極的鋰離子電池(LIBs)提出了巨大的挑戰(zhàn)。通常認(rèn)為,充電過程涉及正負(fù)極材料或電解質(zhì)中的離子傳輸,和固液界面的電荷傳輸。同時大量的文獻(xiàn)認(rèn)為,離子在充滿電解質(zhì)的電極孔隙或電極顆粒內(nèi)部的擴(kuò)散是快速充電過程中的限速步驟,特別是在較高負(fù)載(>3 mAh cm-2)的高比能量鋰離子電池。但難以直接觀測界面結(jié)構(gòu)和離子傳輸機(jī)制,因此很難監(jiān)測跨越電極-電解質(zhì)界面的電荷轉(zhuǎn)移?;谝陨蠁栴},清華大學(xué)張強(qiáng)教授團(tuán)隊,采用紐扣電池三電極體系,利用輸力強(qiáng)1470E/1455輔助分壓,進(jìn)行了動態(tài)EIS及同步正負(fù)極阻抗監(jiān)測,結(jié)果表明,快速的電荷轉(zhuǎn)移速率對于實現(xiàn)不同尺寸材料的高比能量非常重要,這使得對之前傳質(zhì)過程是快充主要速率限制的假設(shè)產(chǎn)生了新的認(rèn)識。Fig 1 . 紐扣電池中的三電極示意圖A) 鋰參比電極是通過在銅線尖 端附加一小片鋰箔制成的B) 紐扣三電極由工作電極,Li參比電極,兩層隔膜,鋰片做對電極構(gòu)成三明治結(jié)構(gòu)Fig 2 動態(tài)EIS用于研究電極界面動力學(xué)A) 動態(tài)交流阻抗(DEIS)的電壓和電流曲線B) 由DEIS獲得的典型Nyquist曲線,石墨負(fù)極對參比和NCA正極對參比,等效電路分別進(jìn)行擬合Fig3 NAC正極在充電過程中不同SoC下的NCA曲線。直流電流為0.3C,GEIS電流擾動為0.03C然而,除了以前專注于單電極的研究,圍繞著界面電荷轉(zhuǎn)移是否決定了鋰離子全電池的快速充電能力,如果是限制步驟,那是如何限制的,仍然然存在很大爭議。因此,三電極動態(tài)EIS提供了一種有效的思路。Fig 4 石墨負(fù)極在充電過程中不同SoC下,動態(tài)GEIS測試 DC電流0.25 C ,交流振幅為0.025 C.結(jié)論使用動態(tài)交流阻抗(DEIS)對三電極中正負(fù)極電荷轉(zhuǎn)移動力學(xué)進(jìn)行了量化,不同于傳統(tǒng)穩(wěn)態(tài)EIS, DEIS結(jié)合三電極可以獨立提取電池中正極或者負(fù)極的反應(yīng)動力學(xué)。此外,在不同的電解質(zhì)條件下,EC/DMC LiPF6(20.6 Ohm)與 EC/DMC LiTFSI (9.3Ohm)相比,NCA在不同的SoC下Rct減半。通過改進(jìn)的電解質(zhì),F(xiàn)EC/DMC LiPF6,加速了鋰離子的去溶劑化,在快充條件下表現(xiàn)出更小的極化。參考文獻(xiàn)1. Unlocking Charge Transfer Limitations for Extreme Fast Charging of Li-Ion Batteries,Angewandte Chemie International Edition ( IF 16.823 ) Pub Date : 2022-11-16 , DOI: 10.1002/anie.202214828, Yu-Xing Yao, Xiang Chen, Nan Yao, Jin-Hui Gao, Gang Xu, Jun-Fan Ding, Chun-Liang Song, Wen-Long Cai, Chong Yan, Qiang Zhang
334人看過
- 技術(shù)文章
- 電機(jī)性能檢測
- 粉體親和性
- 相分離溫控
- 電力測功機(jī)
- 生物柴油氧化
- CCC認(rèn)證
- 學(xué)校跑道檢測
- 3C認(rèn)證報告
- 移動式貨架
- 機(jī)載高光譜
- 空間光調(diào)制器
- 芳綸預(yù)浸料
- 鐵架上下床
- 氧化鋁漿料
- 直寫光刻系統(tǒng)
- EMC測試
- 熱電效率測量
- 塑膠產(chǎn)品檢測
- 光子晶體光纖
- 醫(yī)院鐵架床
- 服裝檢測報告
- 生活飲用水
- 密閉高低溫循
- 在線監(jiān)測儀
- PDH穩(wěn)頻
- 二維電子光譜
- 燃料電池測試
- 頻率分析儀
- 非球面光束整
- 油脂氧化分析
- 抖音質(zhì)檢報告
- 區(qū)域自動氣象
- 玩具測試報告
- 超快二維光譜
- 鋰電池測試
- 光片顯微鏡