
- 2025-01-21 09:33:05微結(jié)構(gòu)光纖
- 微結(jié)構(gòu)光纖是一種具有特殊微觀結(jié)構(gòu)的光纖,其纖芯和包層通常由多種不同折射率的材料以微米或亞微米尺度組成。這種特殊結(jié)構(gòu)賦予了微結(jié)構(gòu)光纖獨特的性能,如大模場面積、高非線性效應(yīng)、可控色散等。微結(jié)構(gòu)光纖在光通信、光傳感、非線性光學(xué)等領(lǐng)域有廣泛應(yīng)用,可用于超高速光信號傳輸、高精度光傳感測量、高效光頻率轉(zhuǎn)換等。
資源:2739個 瀏覽:20次展開
微結(jié)構(gòu)光纖相關(guān)內(nèi)容
微結(jié)構(gòu)光纖文章
微結(jié)構(gòu)光纖產(chǎn)品
產(chǎn)品名稱
所在地
價格
供應(yīng)商
咨詢
- 昊量/auniontech 光子晶體光纖/微結(jié)構(gòu)光纖(PCF)
- 國內(nèi) 上海
- 面議
-
上海昊量光電設(shè)備有限公司
售全國
- 我要詢價 聯(lián)系方式
- 7芯 高純SiO2 多芯微結(jié)構(gòu)光纖
- 國內(nèi) 上海
- 面議
-
筱曉(上海)光子技術(shù)有限公司
售全國
- 我要詢價 聯(lián)系方式
- 高非線性微結(jié)構(gòu)光纖 (高純石英 2.1± 0.3 μm)
- 國內(nèi) 上海
- 面議
-
筱曉(上海)光子技術(shù)有限公司
售全國
- 我要詢價 聯(lián)系方式
- 大模場面積無截止波長單模光纖, 耐高溫單模微結(jié)構(gòu)光纖 35um
- 國內(nèi) 上海
- 面議
-
筱曉(上海)光子技術(shù)有限公司
售全國
- 我要詢價 聯(lián)系方式
微結(jié)構(gòu)光纖問答
- 2025-05-21 11:15:28半導(dǎo)體激光器怎么導(dǎo)入光纖
- 半導(dǎo)體激光器怎么導(dǎo)入光纖:技術(shù)要點與應(yīng)用分析 半導(dǎo)體激光器作為現(xiàn)代光通信、激光加工以及醫(yī)療設(shè)備中不可或缺的核心組件,其光輸出特性與光纖的匹配問題成為影響系統(tǒng)性能的關(guān)鍵因素之一。如何高效地將半導(dǎo)體激光器的光束導(dǎo)入光纖,確保光能的大化傳輸,并減少損耗,是許多技術(shù)人員和工程師研究的。本文將深入探討半導(dǎo)體激光器導(dǎo)入光纖的關(guān)鍵技術(shù),分析光耦合的原理、光纖的選擇以及在不同應(yīng)用中的實際挑戰(zhàn)與解決方案。 半導(dǎo)體激光器與光纖的光耦合原理 在進(jìn)行光耦合時,首先要理解半導(dǎo)體激光器的輸出光束和光纖的光學(xué)特性。半導(dǎo)體激光器輸出的光束具有較高的發(fā)散角,而光纖通常要求光束進(jìn)入的角度與光纖的核心區(qū)域完全對接。為了實現(xiàn)高效的耦合,必須考慮到兩個方面:光束的聚焦與光纖的接收能力。 1. 光束的聚焦 半導(dǎo)體激光器輸出的光束通常呈現(xiàn)一定的發(fā)散度,因此需要使用光學(xué)透鏡系統(tǒng)進(jìn)行聚焦。這些透鏡可以有效地將激光器輸出的光束聚焦到光纖的輸入端口,從而減少光能在傳輸過程中的損耗。常見的聚焦方式有單透鏡聚焦和復(fù)合透鏡系統(tǒng)聚焦兩種方式,前者結(jié)構(gòu)簡單且成本較低,后者則適用于更高精度的光纖耦合。 2. 光纖的選擇 光纖的選擇同樣是影響光耦合效率的重要因素。主要有單模光纖和多模光纖兩種類型。單模光纖能夠提供更低的損耗和更高的傳輸質(zhì)量,適用于長距離光通信。而多模光纖則適合短距離應(yīng)用,其成本較低,且能夠支持較大的光斑面積。選擇合適的光纖不僅影響耦合效率,也決定了系統(tǒng)的傳輸質(zhì)量與成本。 光纖與半導(dǎo)體激光器的接駁技術(shù) 對于半導(dǎo)體激光器與光纖的接駁,常見的技術(shù)方法包括自由空間耦合和微型光學(xué)模塊耦合。 1. 自由空間耦合 自由空間耦合技術(shù)采用透鏡或反射鏡將激光器輸出的光束導(dǎo)入光纖。該方法簡單,且不需要復(fù)雜的光學(xué)對準(zhǔn),但是要求激光器和光纖之間的空間距離和對準(zhǔn)精度較高,稍有偏差就可能導(dǎo)致光損失。 2. 微型光學(xué)模塊耦合 隨著光纖通信技術(shù)的不斷發(fā)展,微型光學(xué)模塊成為了一種更精確的光耦合技術(shù)。這些模塊內(nèi)置了精密的光學(xué)元件,可以更地將激光輸出端和光纖接頭對準(zhǔn),減小了光損耗并提高了傳輸效率。 半導(dǎo)體激光器耦合光纖的應(yīng)用 在實際應(yīng)用中,半導(dǎo)體激光器導(dǎo)入光纖的技術(shù)廣泛應(yīng)用于光通信、醫(yī)療激光、激光顯示和精密制造等領(lǐng)域。尤其在光纖通信中,半導(dǎo)體激光器與光纖的高效耦合直接關(guān)系到信號的質(zhì)量和傳輸距離;而在激光加工和醫(yī)療領(lǐng)域,精確的光束傳輸可以保證加工精度和治果。 總結(jié) 半導(dǎo)體激光器與光纖的光耦合技術(shù)是光學(xué)系統(tǒng)設(shè)計中的一項關(guān)鍵技術(shù),影響著系統(tǒng)的光效、穩(wěn)定性與成本。在實際操作中,合理的光纖選擇、精確的光束聚焦技術(shù)以及高效的光耦合方式是提高傳輸效率的關(guān)鍵因素。隨著光通信和激光技術(shù)的不斷進(jìn)步,未來將會出現(xiàn)更多創(chuàng)新的解決方案,進(jìn)一步推動相關(guān)行業(yè)的發(fā)展與應(yīng)用。
38人看過
- 2025-05-22 14:15:21固體激光器可以光纖傳輸嗎
- 固體激光器可以光纖傳輸嗎?這個問題常常困擾著激光技術(shù)的研究人員和工程師。隨著光纖通信技術(shù)和激光器技術(shù)的不斷發(fā)展,越來越多的激光器種類被應(yīng)用于光纖系統(tǒng)中。固體激光器作為一種常見的激光源,其是否能夠與光纖結(jié)合并進(jìn)行高效的光纖傳輸,成為了技術(shù)發(fā)展的一個重要課題。本文將深入探討固體激光器與光纖傳輸?shù)年P(guān)系,分析其技術(shù)可行性、挑戰(zhàn)以及實際應(yīng)用中的解決方案。 固體激光器的工作原理基于固態(tài)材料的激發(fā)和光放大過程,常見的固體激光器包括摻鐿激光器、摻鉺激光器等。與傳統(tǒng)的氣體激光器和半導(dǎo)體激光器相比,固體激光器通常具有較高的輸出功率和較長的激光波長,適用于多種工業(yè)應(yīng)用。固體激光器是否可以有效地與光纖結(jié)合進(jìn)行傳輸,涉及到多個技術(shù)因素。 固體激光器的輸出光通常是通過光學(xué)系統(tǒng)進(jìn)行耦合到光纖中的。這一過程要求激光器的輸出光斑與光纖的光學(xué)模式匹配。由于固體激光器輸出的光斑形狀和光纖的接收模式不同,因此在進(jìn)行光纖傳輸時,常常需要使用透鏡、反射鏡等光學(xué)元件來實現(xiàn)高效耦合。固體激光器輸出的光功率較大,這就要求光纖的傳輸損耗要盡量低,以確保信號在光纖中能夠穩(wěn)定傳輸。 固體激光器與光纖的耦合和傳輸也面臨一些挑戰(zhàn)。例如,激光器的輸出光通常是空間非高斯模式,而光纖傳輸要求的是高斯模式光波。這就需要在設(shè)計上進(jìn)行優(yōu)化,以實現(xiàn)較高的傳輸效率。光纖傳輸?shù)牟ㄩL范圍有限,固體激光器的波長選擇必須適應(yīng)光纖的工作波長窗口,才能確保傳輸效果。 盡管如此,近年來,隨著光纖技術(shù)的不斷進(jìn)步和固體激光器設(shè)計的創(chuàng)新,固體激光器與光纖的高效耦合和長距離傳輸已經(jīng)得到了實現(xiàn)。例如,利用特殊設(shè)計的光纖,如大模式光纖(MMF)和特種光纖,可以更好地適配固體激光器的輸出光斑,從而提高傳輸效率和穩(wěn)定性。光纖激光器和激光光纖耦合器的不斷發(fā)展也為固體激光器光纖傳輸提供了新的解決方案。 總結(jié)來說,固體激光器在與光纖的結(jié)合與傳輸方面,雖然存在一定的技術(shù)挑戰(zhàn),但通過合適的耦合技術(shù)和光纖設(shè)計,已經(jīng)能夠?qū)崿F(xiàn)高效、穩(wěn)定的光纖傳輸。隨著相關(guān)技術(shù)的不斷進(jìn)步,固體激光器與光纖的結(jié)合將會在許多領(lǐng)域得到廣泛應(yīng)用,推動激光通信、傳感技術(shù)等領(lǐng)域的創(chuàng)新和發(fā)展。
31人看過
- 2022-02-16 17:31:31光纖記錄詳解,一文帶你詳細(xì)了解光纖記錄實驗!
- 一、光纖記錄工作原理人類的大腦擁有約900億個神經(jīng)元,神經(jīng)元之間通過突觸相互連接形成了復(fù)雜的神經(jīng)網(wǎng)絡(luò),并由此產(chǎn)生各種復(fù)雜的功能。大腦能夠合成和釋放上百種神經(jīng)遞質(zhì),神經(jīng)信號通過突觸釋放的神經(jīng)遞質(zhì)從而在神經(jīng)元之間進(jìn)行傳遞(圖1)。圖1當(dāng)神經(jīng)興奮傳導(dǎo)到突觸末端時,會刺激突觸上鈣離子通道打開促使鈣離子大量內(nèi)流,胞內(nèi)鈣離子濃度瞬時上升,驅(qū)動突觸小泡將神經(jīng)遞質(zhì)釋放到突觸間隙中,釋放出的神經(jīng)遞質(zhì)隨即與突觸后膜上的受體結(jié)合,將遞質(zhì)信號傳遞給下一個神經(jīng)元,從而進(jìn)行信息的逐級傳遞(圖2)。這些神經(jīng)元以復(fù)雜的通路投射到多個腦區(qū),產(chǎn)生了學(xué)習(xí)認(rèn)知、情感、控制、動機(jī)、獎勵等豐富的功能。光纖記錄系統(tǒng)則可以通過檢測鈣離子和神經(jīng)遞質(zhì)的熒光變化程度來表征群體神經(jīng)元的活動情況。圖2那么光纖記錄是如何檢測神經(jīng)活動的呢?以鈣離子熒光信號檢測為例,光纖記錄系統(tǒng)的技術(shù)原理是借助鈣離子濃度變化與神經(jīng)元活動之間的嚴(yán)格對應(yīng)關(guān)系,利用特殊的熒光染料或者蛋白質(zhì)熒光探針,將神經(jīng)元中鈣離子的濃度通過熒光強(qiáng)度表現(xiàn)出來,并被光纖記錄系統(tǒng)捕捉,從而達(dá)到檢測神經(jīng)元活動的目的。在神經(jīng)系統(tǒng)中,靜息狀態(tài)時神經(jīng)元胞內(nèi)鈣離子濃度為50-100nM,而在神經(jīng)元興奮時胞內(nèi)鈣離子濃度能上升10-100倍,因此我們可以通過注射鈣離子基因編碼指示劑(Calcium indicator,如GCaMPs、RCaMPs等)來標(biāo)記鈣離子。鈣離子指示劑帶有熒光蛋白(如GFP、RFP等)及其變異體的蛋白質(zhì),可與鈣調(diào)蛋白(CaM)和肌球蛋白輕鏈激酶M13域結(jié)合(圖3左)。當(dāng)神經(jīng)活動增強(qiáng)時鈣離子通道打開,大量鈣離子內(nèi)流并與CaM結(jié)合,導(dǎo)致M13和CaM結(jié)構(gòu)域相互作用,引發(fā)cpEGFP結(jié)構(gòu)重排,從而增強(qiáng)綠色熒光信號(圖3 右)。因此我們可以通過檢測鈣信號的變化來表征神經(jīng)元的活動,進(jìn)而研究神經(jīng)元活動與動物行為的相關(guān)性,探究復(fù)雜行為背后的調(diào)控機(jī)制。圖3(Marisela Morales, et al. Neuron, 2020)圖4:VTA-VGluT2神經(jīng)元編碼先天逃避反應(yīng)光纖記錄檢測神經(jīng)遞質(zhì)信號的原理與上述方法相同,把cpEGFP嵌入特定的神經(jīng)遞質(zhì)受體,受體與神經(jīng)遞質(zhì)結(jié)合后會引發(fā)受體構(gòu)象改變并發(fā)出熒光信號(圖5)。通過病毒注射、轉(zhuǎn)染等技術(shù)手段,可以將這種可遺傳編碼的探針表達(dá)在細(xì)胞或小鼠腦部,借助成像技術(shù),觀察神經(jīng)遞質(zhì)濃度的實時變化。圖5(Yulong Li, et al. Cell, 2018)圖6:條件反射實驗中伏隔核Nac腦區(qū)的DA釋放二、光纖記錄實驗方法在光纖記錄實驗中,首先要選擇合適的熒光病毒。熒光染料或指示劑是通過病毒載體轉(zhuǎn)入目標(biāo)腦區(qū),常用載體為AAV病毒。根據(jù)實驗的不同,需要選擇特異啟動子或者Cre-FloxP系統(tǒng)來特異標(biāo)記目標(biāo)神經(jīng)元,無特異性的GCaMPs表達(dá)雖然可以觀測群體神經(jīng)元活動但無神經(jīng)元特異性,光纖記錄的作用在于觀測特異類型神經(jīng)元群體的活動。實驗流程:1、在目標(biāo)腦區(qū)注射鈣熒光病毒,并在注射位點埋植光纖插針,用于收集熒光;圖7:病毒注射與陶瓷插針埋植2、待2-3周鈣熒光病毒表達(dá)后,連接光纖,使用光纖記錄系統(tǒng)采集動物在行為學(xué)實驗中大腦的鈣熒光信號;圖8:病毒表達(dá)3、通過分析軟件處理鈣熒光信號數(shù)據(jù),并結(jié)合行為學(xué)視頻對動物的行為進(jìn)行分析。圖9:光纖記錄結(jié)合高架十字迷宮實驗三、光纖記錄數(shù)據(jù)分析以瑞沃德R820三色光纖記錄系統(tǒng)記錄的數(shù)據(jù)為例。1、數(shù)據(jù)預(yù)處理。R820三色光纖記錄系統(tǒng)軟件集信號采集與數(shù)據(jù)分析于一體,在數(shù)據(jù)分析中,數(shù)據(jù)預(yù)處理過程包含平滑處理,基線矯正,運動矯正等功能。平滑處理可以將數(shù)據(jù)中的過多雜信號去除,最大限度的突出目標(biāo)peak?;€矯正多數(shù)針對的是熒光信號因長時間記錄導(dǎo)致漂白信號逐步下降,或者光纖的自發(fā)熒光在長期記錄下逐步被漂白基線逐步下降等情況。此情形的數(shù)據(jù)因為整體呈現(xiàn)下降趨勢,不利于后續(xù)數(shù)據(jù)作圖分析,所以需要進(jìn)行基線矯正。運動矯正用于采用410nm對照通道的數(shù)據(jù),410nm數(shù)據(jù)可以用于反應(yīng)背景噪音信號,運動矯正即將410nm數(shù)據(jù)與470nm數(shù)據(jù)進(jìn)行擬合,通過算法從470數(shù)據(jù)中去除410nm數(shù)據(jù)的波動,得到真實的熒光數(shù)據(jù)。圖10:光纖記錄數(shù)據(jù)預(yù)處理2. 將熒光數(shù)據(jù)與動物行為數(shù)據(jù)同步對比,選擇事件標(biāo)記或者增加事件標(biāo)記,事件相關(guān)信號分析作圖。圖11:事件分析3. 將不同組的數(shù)據(jù)進(jìn)行組間對比,即可分析不同處理因素下熒光數(shù)據(jù)的差異。此外,還可結(jié)合行為學(xué)視頻同步分析動物的運動軌跡。圖12:不同數(shù)據(jù)組間分析通過以上步驟,原始的熒光數(shù)據(jù)就可以直接出圖啦。光纖記錄實驗的工作原理,實驗方法以及數(shù)據(jù)分析已經(jīng)全部講完啦….想體驗R820三色多通道光纖記錄系統(tǒng)識別下方二維碼,即可免費試 用讓實驗信號更強(qiáng)更準(zhǔn)
1260人看過
- 2022-11-24 09:30:59光纖記錄實驗過程中需要全程避光嗎?
107人看過
- 2023-05-31 13:03:22客戶成就 |基于光纖的貝塞爾光發(fā)生器制作
- 貝塞爾光束從其被發(fā)現(xiàn)開始,由于其比光學(xué)中典型的高斯光束具有特殊的優(yōu)勢,擁有獨特的無衍射和自恢復(fù)特性,引起了科學(xué)界極大的興趣。這些特性也就意味著光束在被物體部分阻擋后可進(jìn)行自我重建。由于這些獨特性,貝塞爾光束在光學(xué)鑷子、顯微鏡、光譜學(xué)和通信應(yīng)用方面有很大的潛力。然而由于其依賴于空間光元件,并且在滿足定制光束參數(shù)的需要方面受到限制,因此在實際的科學(xué)實驗中要產(chǎn)生貝塞爾光束是十分具有挑戰(zhàn)性的。如今,借助于Nanoscribe的雙光子聚合技術(shù)可直接在光纖上打印新型光子結(jié)構(gòu),使其產(chǎn)生零階和渦流貝塞爾光束。在光纖上打印微納光子結(jié)構(gòu)以產(chǎn)生零階和渦旋貝塞爾光束貝塞爾光束的特殊性使其成為各種光學(xué)應(yīng)用(例如通信、光誘捕和成像等)最 佳選擇。如果你看到貝塞爾光束的橫截面,你會發(fā)現(xiàn)一組同心圓或圓環(huán),與典型的高斯光束相比,光束的最內(nèi)圈可以在更長的延伸范圍內(nèi)保持聚焦。即使貝塞爾光束被一個物體部分阻擋,光束在穿過該物體后能夠進(jìn)行自我重建。然而,要將圓形光束轉(zhuǎn)化為若干環(huán)形,需要特殊的光學(xué)器件,如錐狀折射材料axicon或全息光束整形方法。為了克服這些方法所需的空間光元件的限制,基于光纖的貝塞爾光束發(fā)生器應(yīng)運而生。但是,當(dāng)涉及到調(diào)整光束參數(shù)時,這些基于光纖的解決方案卻是有限的,并且只提供零階貝塞爾光束的生成。來自沙特阿拉伯阿卜杜拉國王科技大學(xué)的科學(xué)家們開發(fā)了一種新的方法來制造一個由堆疊的微光元件組成的光子結(jié)構(gòu)。他們將該結(jié)構(gòu)直接3D打印在光纖面上,以實現(xiàn)從光纖生成零階和渦流貝塞爾光束。 基于光纖的貝塞爾光束發(fā)生器的設(shè)計由三個元素組成,用于對齊單模光纖輸出的高斯樣光束,并將其轉(zhuǎn)化為貝塞爾光束。這些微光學(xué)元件是使用Nanoscribe的2PP打印技術(shù)在光纖面上一次性3D打印出來的。圖片來自于:KAUST新型解決方案-光纖上打印3D結(jié)構(gòu)科學(xué)家們使用雙光子聚合高分辨率三維打印技術(shù),為從光纖中直接產(chǎn)生零階和高階貝塞爾光束,并與光纖的核心對齊提供了有效的解決方案并。同時,Nanoscribe的IP-Dip光刻膠提供了生產(chǎn)光子晶體光纖設(shè)計所需的高空間分辨率,以便操縱光束。全新微納加工方案使得打印的微光學(xué)元件具有較低的表面粗糙度。三維打印的微光學(xué)元件顯示了光束轉(zhuǎn)換的高效率和低傳輸損耗?;?PP原理三維打印技術(shù)能夠打印先進(jìn)的任意形狀的復(fù)雜3D微光學(xué)元件,如貝塞爾光束發(fā)生器。該基于光纖的光子結(jié)構(gòu)由三個微光學(xué)元件組成,它們相互對準(zhǔn)并與底層光纖面相連接,并可實現(xiàn)單個元件的無縫集成。2PP技術(shù)可實現(xiàn)按需定制光學(xué)參數(shù)來調(diào)整光子結(jié)構(gòu)設(shè)計。因此,這種復(fù)合光子結(jié)構(gòu)的快速原型設(shè)計使得在根據(jù)具體應(yīng)用進(jìn)行改變設(shè)計時,可以實現(xiàn)快速的設(shè)計迭代周期。得益于2PP三維打印技術(shù)的靈活性,定制打印的貝塞爾光束發(fā)生器可以應(yīng)用于內(nèi)窺鏡,光學(xué)相干斷層掃描、基于光纖的光學(xué)捕集和微操縱等領(lǐng)域。SEM特寫圖顯示了基于光纖的3D打印貝塞爾光束發(fā)生器,該結(jié)構(gòu)帶有螺旋相位板的光子晶體設(shè)計和帶有支撐結(jié)構(gòu)的微透鏡。靈感來自于KAUST的設(shè)計。由Nanoscribe制作A2PL技術(shù)實現(xiàn)納米精度三維對準(zhǔn)在光纖上打印光子結(jié)構(gòu)來生成貝塞爾光束需要打印精確對準(zhǔn)光纖光軸的微光學(xué)元件。新一代的Quantum X對準(zhǔn)系統(tǒng)可以比其他Nanoscribe基于2PP技術(shù)的3D打印系統(tǒng)在達(dá)到更高形狀精度的同時,更快、更簡便、更精確地完成這項任務(wù)。這是因為Quantum X align是基于最 先進(jìn)的平臺,并具有專 利的對準(zhǔn)雙光子光刻技術(shù)A2PL?。因此,優(yōu)化的硬件和軟件使得在光纖上以亞微米的精度打印復(fù)雜的3D微光學(xué)元件成為了可能。項目團(tuán)隊阿卜杜拉國王科技大學(xué)-生物和環(huán)境科學(xué)工程系阿卜杜拉國王科技大學(xué)-計算機(jī),電氣和數(shù)學(xué)科學(xué)與工程系 原文文獻(xiàn)3D-printed fiber-based zeroth- and high-order Bessel beam generator https://opg.optica.org/optica/fulltext.cfm?uri=optica-9-6-645&id=476826
269人看過
- 技術(shù)文章
- 電荷抽取測試
- 纖維表面涂層
- 導(dǎo)熱粉體的水
- 電容電壓測試
- 磁性異質(zhì)結(jié)
- 發(fā)酵液含油檢
- 亞馬遜EPR
- 巖屑含油含水
- 3D生物打印
- 力學(xué)性能研究
- 水質(zhì)檢測機(jī)構(gòu)
- X射線探測器
- 德國EPR
- 關(guān)門速度儀
- NanoMO
- 成人玩具檢測
- 磁光克爾效應(yīng)
- 在線輻射監(jiān)測
- 共晶水鹽體系
- 微膠囊相變材
- 旋轉(zhuǎn)圓盤圓環(huán)
- 聚合物結(jié)晶度
- 水質(zhì)檢測報告
- 高速熒光成像
- 煤矸石破碎
- 玩偶檢測報告
- 探針顯微鏡
- 臺式X射線
- 熒光校準(zhǔn)片
- 壓電位移臺
- 固體廢物固化
- 燃料氫含量
- 生物顆粒的制備
- 食品級檢測
- 區(qū)域輻射監(jiān)測
- 制冷成像亮度