• <strike id="cseqw"><noscript id="cseqw"></noscript></strike>
  • <strike id="cseqw"></strike>

    儀器網(wǎng)(yiqi.com)歡迎您!

    | 注冊 登錄
    網(wǎng)站首頁-資訊-專題- 微頭條-話題-產(chǎn)品- 品牌庫-搜索-供應商- 展會-招標-采購- 社區(qū)-知識-技術-資料庫-方案-產(chǎn)品庫- 視頻

    產(chǎn)品中心

    當前位置:儀器網(wǎng)>產(chǎn)品中心> 生命科學儀器>生物工程設備>生物反應器>類器官培養(yǎng)系統(tǒng)
    收藏  

    類器官培養(yǎng)系統(tǒng)

    立即掃碼咨詢

    聯(lián)系方式:400-822-6768

    聯(lián)系我們時請說明在儀器網(wǎng)(www.vietnamtrade.org)上看到的!

    掃    碼    分   享
    為您推薦

    產(chǎn)品特點

    類器官技術平臺是一種微流控微生理系統(tǒng)平臺,能夠維持和培養(yǎng)微縮的等效器官,模擬其各自的全尺寸對應器官的生物學功能和生物的主要特征,如生物流體流動,機械和電耦合,生理組織與流體、組織與組織的比率。
    類器官串聯(lián)芯片培養(yǎng)系統(tǒng)包括控制單元和芯片,控制單元能夠模擬人體內(nèi)生理環(huán)境,包括溫度、壓力、真空度、微流道循環(huán)頻率、時間等參數(shù),芯片有不通的微流道設計,針對不同的器官可以單獨設置提供相應的培養(yǎng)條件,提供精準的培養(yǎng)和分化環(huán)境。類器官串聯(lián)芯片培養(yǎng)系統(tǒng)可提供不同類器官的串聯(lián)共培養(yǎng)方案,避免單一類器官無法模擬人體復雜生理學條件下器官相互通訊交流的不足。通過類器官模擬人類器官組織的生理發(fā)育過程,應用于疾病模型、腫瘤發(fā)生、以及藥物安全性、有效性、毒性、ADME等方面的評估,旨在減少和取代實驗室動物測試,簡化人體臨床試驗。

    詳細介紹


    類器官串聯(lián)芯片培養(yǎng)系統(tǒng)--- HUMIMIC

     

           

          類器官技術平臺是一種微流控微生理系統(tǒng)平臺,能夠維持和培養(yǎng)微縮的等效器官,模擬其各自的全尺寸對應器官的生物學功能和生物的主要特征,如生物流體流動,機械和電耦合,生理組織與流體、組織與組織的比率。

          類器官串聯(lián)芯片培養(yǎng)系統(tǒng)包括控制單元和芯片,控制單元能夠模擬人體內(nèi)生理環(huán)境,包括溫度、壓力、真空度、微流道循環(huán)頻率、時間等參數(shù),芯片有不通的微流道設計,針對不同的器官可以單獨設置提供相應的培養(yǎng)條件,提供精JIN準的培養(yǎng)和分化環(huán)境。類器官串聯(lián)芯片培養(yǎng)系統(tǒng)可提供不同類器官的串聯(lián)共培養(yǎng)方案,避免單一類器官無法模擬人體復雜生理學條件下器官相互通訊交流的不足。通過類器官模擬人類器官組織的生理發(fā)育過程,應用于疾病模型、腫瘤發(fā)生、以及藥物安全性、有效性、毒性、ADME等方面的評估,旨在減少和取代實驗室動物測試,簡化人體臨床試驗。


          類器官是指在結構和功能上都類似來源器官或組織的模擬物,通過取特定器官的干細胞(iPS/ES),或者利用人的多能干細胞定向誘導分化,能獲得微型的器官樣的三維培養(yǎng)物,在體外模擬人體器官發(fā)育過程。

          類器官,具有某一器官多種功能性細胞和組織形態(tài)結構的三維(3D)培養(yǎng)物,主要來源于人具有多項分化潛能的多能干細胞(包括人胚胎干細胞和人誘導多能干細胞iPSCs)或成體干細胞。人多能干細胞能分化為個體所有類型的細胞,在體外,經(jīng)過誘導分化,模擬人體器官發(fā)育過程,能使人多能干細胞直接分化形成各種類器官;不同組織器官都存在內(nèi)源組織干細胞,在維持各器官的功能形態(tài)發(fā)揮著重要作用。這些干細胞在體外一定的誘導條件下,可以自組織形成一個直徑僅為幾毫米的具有組織結構和多種功能細胞的三維培養(yǎng)物。器官芯片是獲取兩個或兩個以上不同的類器官,并且放置在特定的培養(yǎng)芯片上進行共培養(yǎng),能模擬人體的多個器官參與的生理學過程。

          與傳統(tǒng)2D細胞培養(yǎng)模式相比,3D培養(yǎng)的類器官包含多種細胞類型,能夠形成具有功能的“微器官”,能更好地用于模擬器官組織的發(fā)生過程及生理病理狀態(tài),因而在基礎研究以及臨床診療方面具有廣闊的應用前景。


          基于這一定義,可以發(fā)現(xiàn)類器官具備這樣幾個特征:
          * 必須包含一種以上與來源器官相同的細胞類型;
          * 應該表現(xiàn)出來源器官所特有的一些功能;
          * 細胞的組織方式應當與來源器官相似。
     

          類器官作為一個新興的技術,在科學研究領域潛力巨大,包括發(fā)育生物學、疾病病理學、細胞生物學、再生機制、精 準醫(yī)療以及藥物毒性和藥效試驗。類器官培養(yǎng)使研究人體發(fā)育提供了不受倫理限制的平臺,為藥物篩選提供了新的平臺,也是對現(xiàn)有2D培養(yǎng)方法和動物模型系統(tǒng)的高信息量的互補 。此外,類器官為獲取更接近自然人體發(fā)育細胞用于細胞ZL成為可能。通過類器官繁殖的干細胞群取代受損或者患病的組織,類器官提供自體和同種異體細胞療法的可行性,未來這一技術在再生醫(yī)學領域也擁有巨大的潛力 。使用這項技術,采用CRISPR/Cas9能夠糾正體外遺傳異常并能夠?qū)⒔】档霓D基因細胞再次回輸入患者體內(nèi),并在后期整合入組織內(nèi)。在精 準醫(yī)學應用中,患者衍生的類器官也被證明為有價值的診斷工具。在進行ZL之前,采用從患者樣本來源的類器官篩查患者體外藥物反應,旨在為癌癥和囊胞性纖維癥患者的護理提供指導并預測ZL結果。隨著類器官培養(yǎng)系統(tǒng)以及其實驗開發(fā)技術的不斷發(fā)展,類器官應用到了各大研究領域。

          類器官可以模擬人體的內(nèi)外環(huán)境和人體器官,幫助研究人員觀測用藥會對人體器官功能產(chǎn)生什么樣的影響。在提倡精 準醫(yī)學和個體化ZL的時代,類器官研究比傳統(tǒng)的二維細胞培養(yǎng)更具有針對性,并且可以區(qū)別不同癌癥對于相同藥物的反應。不僅如此,研究者還希望通過誘導多功能干細胞強大的再生潛能,體外生成新的器官或組織,然后移植入體內(nèi)以替代損壞的組織器官。

              

     

     

    類器官培養(yǎng)系統(tǒng)--- HUMIMIC的技術方案:在沒有病人的情況下測試病人

    基于這一定義,可以發(fā)現(xiàn)類器官具備這樣幾個特征:
    ?    必須包含一種以上與來源器官相同的細胞類型;
    ?    應該表現(xiàn)出來源器官所特有的一些功能;

    ?    細胞的組織方式應當與來源器官相似。
     

          


          類器官可以模擬人體的內(nèi)外環(huán)境和人體器官,幫助研究人員觀測用藥會對人體器官功能產(chǎn)生什么樣的影響。在提倡精JIN準醫(yī)學和個體化治ZHI療的時代,類器官研究比傳統(tǒng)的二維細胞培養(yǎng)更具有針對性,并且可以區(qū)別不同癌癥對于相同藥物的反應。不僅如此,研究者還希望通過誘導多功能干細胞強大的再生潛能,體外生成新的器官或組織,然后移植入體內(nèi)以替代損壞的組織器官。此外,類器官為獲取更接近自然人體發(fā)育細胞用于細胞治ZHI療成為可能。通過類器官繁殖的干細胞群取代受損或者患病的組織,類器官提供自體和同種異體細胞療法的可行性,未來這一技術在再生醫(yī)學領域也擁有巨大的潛力 。在精JIN準醫(yī)學應用中,患者衍生的類器官也被證明為有價值的診斷工具。在進行治ZHI療之前,采用從患者樣本來源的類器官篩查患者體外藥物反應,旨在為癌癥和囊胞性纖維癥患者的護理提供指導并預測治ZHI療結果。隨著類器官培養(yǎng)系統(tǒng)以及其實驗開發(fā)技術的不斷發(fā)展,類器官應用到了各大研究領域。       

     

    類器官培養(yǎng)的應用案例

    類器官的應用舉例---疾病模型

          類器官的研究還可用于于疾病模型,如發(fā)育相關問題,遺傳疾病,腫瘤癌癥等。
    通過使用患者的iPSCs可建立有價值的疾病模型,并能在體外模擬重現(xiàn)病人疾病模型;同時,類器官的建立可以實現(xiàn)對藥物藥效和毒性進行更有效、更真實的檢測。由于類器官可以直接由人類iPSCs直接培養(yǎng)生成,相比于動物模型很大程度上避免了因動物和人類細胞間的差異而導致的檢測結果不一致。

     

    類器官的應用舉例---藥效和毒理測試

    可以從患者來源的健康和腫瘤組織樣品中建立類器官。與此同時類器官培養(yǎng)物可用于藥物篩選,這可將腫瘤的遺傳背景與藥物反應相關聯(lián)。來自同一患者健康組織的類器官的建立提供了通過篩選選擇性殺死腫瘤細胞而又不損害健康細胞的化合物來開發(fā)毒性較小的藥物的機會。自我更新的肝細胞類器官培養(yǎng)物可用于測試潛在新藥的肝毒性(臨床試驗中藥物失敗的原因之一)。在該實施例中,藥物B似乎最適合于治ZHI療患者,因為它特異性殺死腫瘤類器官并且不引起肝毒性。

     

    類器官的應用舉例---重演腫瘤形成

    類器官的培養(yǎng)和建立,可用于研究腫瘤生成過程中的突變過程,比如說,通過從同一腫瘤的不同區(qū)域培養(yǎng)無性繁殖的類細胞器,可以用來研究腫瘤內(nèi)部的異質(zhì)性。

    來自不同健康器官的類器官的生長,然后對培養(yǎng)物進行全基因組測序,可以分析器官特異性突變譜。通過生長來自同一腫瘤不同區(qū)域的類器官,可以用于研究腫瘤內(nèi)異質(zhì)性。區(qū)域特異性突變譜可以通過類器官的全基因組測序來揭示。使用與上述相似的方法,可以利用類器官來研究特定化合物對健康細胞和腫瘤細胞突變譜的影響。

     

    類器官的應用舉例---腫瘤患者個性化醫(yī)療

    有助于個性化治ZHI療策略的設計,利用病變和正常的類器官來評估各種治ZHI療方案??梢院Y選多種活性藥物和小化合物,設計更有效的用藥方案。培養(yǎng)成熟的類器官還可以為器官再生和器官移植提供廣泛的組織來源。對類器官進行基因操作來修復缺失的功能,并移植回到患者體內(nèi)。

     

    類器官的應用舉例---類器官“生物Bank”

    根據(jù)目前的研究進展,建立了活體類器官“生物bank”。其中,腫瘤來源的類器官在表型和基因上都與腫瘤相似。另外,腫瘤類類器官生物庫使生理學相關的藥物篩選成為可能?;铙w類器官生物庫可用于確定類器官是否對個體患者的藥物反應,具有預測價值。 

     

    類器官串聯(lián)培養(yǎng)系統(tǒng)--- HUMIMIC的技術方案:

    多器官串聯(lián)培養(yǎng),在沒有病人的情況下測試病人

    類器官串聯(lián)芯片培養(yǎng)系統(tǒng)包括控制單元和芯片,控制單元能夠模擬人體內(nèi)生理環(huán)境,包括溫度、壓力、真空度、微流道循環(huán)頻率、時間等參數(shù),芯片有不通的微流道設計,針對不同的器官可以單獨設置提供相應的培養(yǎng)條件,提供精JIN準的培養(yǎng)和分化環(huán)境。類器官串聯(lián)芯片培養(yǎng)系統(tǒng)可提供不同類器官的串聯(lián)共培養(yǎng)方案,避免單一類器官無法模擬人體復雜生理學條件下器官相互通訊交流的不足。通過類器官模擬人類器官組織的生理發(fā)育過程,應用于疾病模型、腫瘤發(fā)生、以及藥物安全性、有效性、毒性、ADME等方面的評估,旨在減少和取代實驗室動物測試,簡化人體臨床試驗。

     20231222-1034062777.jpg

     

    為獲取更高相關與準確的測試結果,我們開發(fā)了人體器官模型的自動芯片測試:

          配備具有指示相關性的器官模型的芯片,以能夠在接觸生物體之前檢測其安全性和有效性;

          最ZUI終為芯片配備患者自身相關病變器官的亞基,以評估整個個性化治ZHI療的效果;

          人體生理反應往往涉及更多介質(zhì)循環(huán)和不同組織間相互作用,多器官芯片才能全面反映出機體器官功能的復雜性、完整性以及功能變化,一個相互作用的系統(tǒng)才能更好的模擬整個系統(tǒng)中器官和組織的不同功能??商峁┎煌惼鞴俚拇?lián)培養(yǎng)解決方案,避免單一類器官無法模擬人體復雜生理學條件下器官相互通訊交流的不足。把多種不同器官和組織培養(yǎng)在芯片上,然后通過微通道連接起來,集成一個相互作用的系統(tǒng),從而模擬人體中的不同功能器官的交流通訊和互相作用。

          TissUse專有的商用MOC技術支持的器官培養(yǎng)物的數(shù)量范圍從單個器官培養(yǎng)到支持復雜器官相互作用研究的器官數(shù)量,包括單器官、二器官、三器官和四器官培養(yǎng)的商業(yè)化的平臺。成功的案例包括:肝臟、腸、皮膚、血管系統(tǒng)、神經(jīng)組織、心臟組織、軟骨、胰XIAN、腎臟、毛囊、肺組織、脂肪組織、腫瘤模型和骨SUI以及各自的多器官串聯(lián)組合方案。

          德國TissUse公司專注于類器官培養(yǎng)系統(tǒng)研究22年,推出的HUMIMIC類器官串聯(lián)芯片培養(yǎng)系統(tǒng),得到FDA的推薦,可提供不同類器官的串聯(lián)培養(yǎng)解決方案,避免單一類器官培養(yǎng)無法模擬人體器官相互通訊關聯(lián)的缺陷,同時也提供相關的技術方案和后續(xù)方法試劑支持,屬于國際上少有的“Multi-Organ-Chip” 和“Human-on-a-chip”的方案提供者。相關方案已被廣泛應用于藥物開發(fā)、化妝品、食品與營養(yǎng)和消費產(chǎn)品等多個領域.

     

    類器官串聯(lián)培養(yǎng)系統(tǒng)---HUMIMIC系統(tǒng)

     

    一、專業(yè)化的硬件(控制單元)
          主機(控制單元)是一個緊湊的臺式設備,能夠模擬人體內(nèi)生理環(huán)境,包括溫度、壓力、真空度、微流道循環(huán)頻率、時間等參數(shù)。芯片有不通的微流道設計,針對不同的器官可以單獨設置提供相應的培養(yǎng)條件,提供精JIN準的培養(yǎng)和分化環(huán)境。

    7寸觸摸顯示器,控制面板可以在整個過程中對每個多器官芯片分別進行調(diào)節(jié),無需外接電腦,軟件操控友好;

    可以自主設置每個器官芯片的培養(yǎng)條件,包括溫度、壓力、真空度、微流道循環(huán)頻率、時間等參數(shù);

    可串聯(lián)培養(yǎng)2個不同(或相同)、3個不同的、4個不同的類器官;

    3個連接拓展口,用于連接其他設備;

    同時操控高達8個Chip3 / Chip3 plus,4個Chip2 /Chip4或這些的組合; 

    20231222-1057646277.JPG 

     

    二、類器官芯片

    芯片有不通的微流道設計,針對不同的器官可以單獨設置提供相應的培養(yǎng)條件,提供精JIN準的培養(yǎng)和分化環(huán)境;

    芯片的泵腔內(nèi)的柔性膜通過連接的管道,受到壓力或真空的作用,在微流道之中產(chǎn)生脈動體流;

    二聯(lián)類器官芯片可以在一個芯片上串聯(lián)培養(yǎng)2個不同(或相同)的類器官;

    三聯(lián)類器官芯片可以在一個芯片上串聯(lián)培養(yǎng)3個不同的類器官;

    四聯(lián)類器官芯片可以在一個芯片上串聯(lián)培養(yǎng)4個不同的類器官;

     20231222-172540489.JPG

    三、服務方案(細胞、試劑,誘導方案)

    20231222-571352883.JPG

     

    四、器官模型和串聯(lián)培養(yǎng)技術

    20231222-1377599736.JPG

    類器官串聯(lián)培養(yǎng)系統(tǒng)---HUMIMIC的應用案例

    1、神經(jīng)球和肝臟的串聯(lián)共培養(yǎng)(柏林工業(yè)大學)-二聯(lián)器官共培養(yǎng)的藥物敏感性

    2015, Journal of Biotechnology, 

    A multi-organ chip co-culture of neurospheres and liver equivalents for long-term substance testing

    目前用于藥物開發(fā)的體外實驗平臺無法模擬人體器官的復雜性,而人類和實驗室動物的系統(tǒng)差異巨大,因此現(xiàn)有的方案都不能準確預測藥物的安全性和有效性。德國、葡萄牙和俄羅斯的研究團隊通過TissUse GmbH公司的微流控多器官芯片(MOC)平臺,測試毒物對多器官的作用,揭示了基于微流控的多器官串聯(lián)共培養(yǎng)能夠更好的模擬人體的生理學環(huán)境。在體外培養(yǎng)條件下,由于氧氣和營養(yǎng)供應有限,類器官培養(yǎng)往往會隨著時間的推移而去分化。然而微流控系統(tǒng)中通過持續(xù)灌注培養(yǎng)基,更好地控制環(huán)境條件,如清除分泌物和刺激因子,并且培養(yǎng)基以可控流速通過,以模擬血流產(chǎn)生的生物剪切應力,因此類器官培養(yǎng)物可以保持良好的生長狀態(tài)。

     20231222-1332321889.jpg

     

    雙器官串聯(lián)芯片(2-OC)能夠串聯(lián)共培養(yǎng)人的神經(jīng)球(NT2細胞系)和肝臟類器官(肝HepaRG細胞和肝HHSteC細胞)。在持續(xù)兩周的實驗中,反復加入神經(jīng)毒劑2,5-己二酮,引起神經(jīng)球和肝臟的細胞凋亡。跟單器官培養(yǎng)相比,串聯(lián)共培養(yǎng)對毒劑更敏感。因此,多器官串聯(lián)共培養(yǎng)在臨床研究中可以更準確地預測藥物的安全性和有效性。推測這是因為一個類器官的凋亡信號導致了第二個類器官對藥物反應的增強,這一推測得到了實驗結果的支持,即串聯(lián)共培養(yǎng)的敏感性增加主要發(fā)生在較低濃度藥物中。

     20231222-684941739.jpg

     

    2、心臟肝臟骨骼皮膚的串聯(lián)共培養(yǎng)(哥倫比亞大學)-四聯(lián)器官共培養(yǎng)的復雜通訊模型

    哥倫比亞大學的科學家也開發(fā)了一種多器官串聯(lián)芯片,建立了串聯(lián)共培養(yǎng)心臟、肝臟、骨骼、皮膚的技術,發(fā)表于2022年的Nature Biomedical Engineering,中通過血液循環(huán)串聯(lián)培養(yǎng)4個類器官,保持了各個類器官的表型,還研究了常見的抗ANTI癌藥阿霉素對串聯(lián)芯片中的類器官以及血管的影響。結果顯示藥物對串聯(lián)共培養(yǎng)類器官的影響與臨床研究結果非常相似,證明了多器官串聯(lián)共培養(yǎng)能夠成功的模擬人體中的藥代動力學和藥效學特征。

    “最值得注意的是,多器官串聯(lián)芯片能夠準確的預測出阿霉素的心臟毒性和心肌病,這意味著,臨床醫(yī)生可以減少阿霉素的治ZHI療劑量,甚至讓患者停止該治ZHI療方案?!?/p>

    Gordana Vunjak-Novakovic, Department of Biomedical Engineering, Columbia University

     20231222-1357098738.jpg

     

    3、胰島和肝臟在芯片上的串聯(lián)共培養(yǎng)(阿斯利康)-二聯(lián)器官共培養(yǎng)的反饋通訊

    2017, Nature Scientific Reports, 

    Functional coupling of human pancreatic islets and liver spheroids on-a-chip: Towards a novel human ex vivo type 2 diabetes model

    人類系統(tǒng)性疾病的發(fā)生過程都是通過破壞兩個或多個器官的自我平衡和相互交流。研究疾病和藥療就需要復雜的多器官平臺作為體外生理模型的工具,以確定新的藥物靶點和治ZHI療方法。2型糖尿病(T2DM)的發(fā)病率正在不斷上升,并與多器官并發(fā)癥相關聯(lián)。由于胰島素抵抗,胰島通過增加分泌和增大胰島體積來滿足胰島素不斷增加的需求量。當胰島無法適應機體要求時,血糖水平就會升高,并出現(xiàn)明顯的2型糖尿病。由于胰島素是肝臟代謝的關鍵調(diào)節(jié)因子,可以將生產(chǎn)葡萄糖的平衡轉變?yōu)橛欣谄咸烟堑膬Υ?,因此胰島素抵抗會導致糖穩(wěn)態(tài)受損,從而導致2型糖尿病。過去已經(jīng)報道了多種表征T2DM特征的動物模型,但是,從動物實驗進行的研究往臨床上轉化的效果不佳。更重要的是,目前使用的藥物,雖然能緩解糖尿病癥狀,但對疾病進一步發(fā)展的治ZHI療的效果有限。

    胰XIAN腺和肝臟是參與維持葡萄糖穩(wěn)態(tài)的兩個關鍵器官,為了模擬T2DM,阿斯利康(AstraZeneca)的科學家利用TissUse GmbH公司的微流控多器官芯片(MOC)平臺,通過微流控通道相互連接,建立一個雙器官串聯(lián)芯片(2-OC)模型,實現(xiàn)芯片上胰XIAN腺和肝臟類器官的串聯(lián)共培養(yǎng),在體外模擬了胰XIAN腺和肝臟之間的交流通訊。

     

     

    建立串聯(lián)共培養(yǎng)類器官(胰島+肝臟)和單獨培養(yǎng)類器官(僅胰島或肝臟),在培養(yǎng)基中連續(xù)培養(yǎng)15天,串聯(lián)共培養(yǎng)顯示出穩(wěn)定、重復、循環(huán)的胰島素水平。而胰島單獨培養(yǎng)的胰島素水平不穩(wěn)定,從第3天到第15天,降低了49%。胰島與肝球體串聯(lián)共培養(yǎng)中,胰島可長期維持葡萄糖水平,刺激胰島素分泌,而單獨培養(yǎng)的胰島,胰島素分泌顯著減少。胰島分泌的胰島素促進了肝球體對葡萄糖的利用,顯示了串聯(lián)共培養(yǎng)中類器官之間的功能性的交流。在單獨培養(yǎng)中的肝球體中,15天內(nèi)循環(huán)葡萄糖濃度穩(wěn)定維持在~11 mM。而與胰島共培養(yǎng)時,肝球體的循環(huán)葡萄糖在48小時內(nèi)降低到相當于人正常餐后的水平度,表明胰島類器官分泌的胰島素刺激了肝球體攝取葡萄糖。

     

     

    4、肺腫瘤和皮膚在芯片上的串聯(lián)共培養(yǎng)(拜耳)-抗體藥物對腫瘤和正常器官的影響 

    針對EGFR抗體的藥物在癌癥治ZHI療中被廣泛應用。然而,抗ANTI癌藥物的使用量與皮膚不良反應成正比相關,皮膚毒性是上皮生長因子受體(EGFR) 靶向治ZHI療中最常見的副作用。但是對于后者的預測目前的方法均無法實現(xiàn)。

    雙器官串聯(lián)芯片(2-OC)模型,實現(xiàn)芯片上皮膚和腫瘤的共培養(yǎng),用于模擬重復給藥的劑量實驗,同時還生成安全性和有效性的數(shù)據(jù),可以在非常早的階段檢測到西妥昔單抗cetuximab對皮膚的幾個關鍵副作用。這種體外分析能夠在臨床表現(xiàn)之前預評估毒性副作用,可以替代動物試驗,有望成為評價EGFR抗體和其他腫瘤藥物治ZHI療指數(shù)的理想工具。

     

     

    5、皮膚-肝臟在芯片上的串聯(lián)共培養(yǎng)(拜爾斯道夫公司)—評估化妝品不同的給藥途徑

    一種獨特的基于芯片的組織培養(yǎng)平臺已經(jīng)開發(fā)出來,使化妝品和藥物對一套微型人體器官的影響測試成為可能。這種“人-片”平臺旨在生成可復制的、高質(zhì)量的人體物質(zhì)安全性預測體外數(shù)據(jù)。被測物質(zhì)進入表皮或在表皮內(nèi)代謝,然后泵入肝臟并激活相應的CYPs。因此,在肝臟和皮膚的聯(lián)合培養(yǎng)中,多器官芯片是一種有前途的體外方法,用于全身和局部劑量的化妝品和藥物。

     20231222-818578046.jpg

     

    皮膚等效物的培養(yǎng)整合在一個系統(tǒng)中。芯片上的微泵使代謝運輸和附加的生理剪切應力成為可能。肝臟和皮膚等效物存活10天,并顯示緊密連接和特異性轉運蛋白的表達。每天服用、維甲酸和倍他米松-21-戊酸,持續(xù)7天,以研究已知可被皮膚和肝臟代謝的化合物的作用。將表面敷于表皮的效果與直接敷于培養(yǎng)基的效果進行比較,分析對皮膚滲透和代謝的影響。對肝臟和皮膚等價物進行代謝酶、轉運體、分化標記物的表達和活性分析。結果顯示,在蛋白水平和mRNA水平上,根據(jù)不同物質(zhì)處理,ⅰ、ⅱ期酶均有本構性和誘導性表達。因此,在肝臟和皮膚的聯(lián)合培養(yǎng)中,多器官芯片是一種有前途的體外方法,用于全身和局部劑量的藥物和化妝品。

     

     

    6、肺類器官在芯片上的培養(yǎng)(菲莫國際)-空氣環(huán)境對呼吸道的影響

    使用類人肺模型研究吸入氣溶膠的沉積和吸附,從而使體外人體呼吸毒性的數(shù)據(jù)更加準確和可預測。目前的體外氣溶膠暴露系統(tǒng)通常不能模擬這些特性,這可能導致在體外生物測試系統(tǒng)中交付非現(xiàn)實的、非人體相關的可吸入試驗物質(zhì)劑量。模擬和研究體外氣溶膠暴露裝置-吸入器可主動呼吸、操作醫(yī)用吸入器,或吸吸煙草制品。此外,它可以填充從人類呼吸道不同區(qū)域分離的三維上皮細胞。包括口腔、支氣管和肺泡細胞培養(yǎng)物的氣溶膠傳遞和相容性的概念的研究,將其應用于測試系統(tǒng),吸入產(chǎn)生的生理條件下,測試表現(xiàn)在人的呼吸道的方式。這種方法的優(yōu)點是,它無需花費昂貴、耗時和具有科學挑戰(zhàn)性的工作來確定體內(nèi)提供的劑量,默認情況下,適用于任何測試煙草燃燒產(chǎn)生的氣體和任何測試成分。

     

     

    類器官串聯(lián)培養(yǎng)系統(tǒng)---HUMIMIC的參考文獻


    2023, Journal of Applied Toxicology, Early View, Application of a skin and liver Chip2 microphysiological model to investigate the route-dependent toxicokinetics and toxicodynamics of consumer-relevant doses of genistein

    Tao TP, Brandmair K, Gerlach S, Przibilla J, Schepky A, Marx U, Hewitt NJ, Maschmeyer I, Kühnl J

     

    2023, Journal of Applied Toxicology, Early View, Suitability of different reconstructed human skin models in the skin and liver Chip2 microphysiological model to investigate the kinetics and first-pass skin metabolism of the hair dye, 4-amino-2-hydroxytoluene

    Brandmair K, Tao TP, Gerlach S, Przibilla J, Schepky A, Marx U, Hewitt NJ, Kühnl J, Maschmeyer I

     

    2023, Scientific reports, Vol. 13, Microfluidic-based prostate cancer model for investigating the secretion of prostate-specific antigen and microRNAs in vitro

    Padmyastuti A, Sarmiento MG, Dib M, Ehrhardt J, Schoon J, Somova M, Burchardt M, Roennau, Pinto PC

     

    2023, bioRxiv, Preprint, Diseased human pancreas and liver microphysiological system for preclinical diabetes research

    Rigal S, Casas B, Kanebratt KP, Wennberg Huldt C, Magnusson LU, Mullers E, Karlsson F, Clausen M, Hansson SF, Jansson Lofmark R, Ammala C, Marx U, Gennemark P, Cedersund G, Andersson TB, Vilen LK

     

    2023, Alternatives to Laboratory Animals, OnlineFirst, Advances in Animal Models and Cutting-Edge Research in Alternatives: Proceedings of the Third International Conference on 3Rs Research and Progress, Vishakhapatnam, 2022

    Naik NN, Vadloori B, Poosala S, Srivastava P, Coecke S, Smith A, Akhtar A, Roper C, Radhakrishnan S, Bhyravbhatla B, Damle M, Pulla VK, Hackethal J, Horland R, Li AP, Pati F, Singh MS, Occhetta P, Bisht R, Dandekar P, Bhagavatula K, Pajkrt D, Johnson M, Weber T, Huang J, Hysenaj L, Mallar B, Ramray B, Dixit S, Joshi S, Kulkarni M

     

    2023, Frontiers in Pharmacology, Vol. 14, Development of a microphysiological skin-liver-thyroid Chip3 model and its application to evaluate the effects on thyroid hormones of topically applied cosmetic ingredients under consumer-relevant conditions

    Tao TP, Maschmeyer I, LeCluyse EL, Rogers E, Brandmair K, Gerlach S, Przibilla J, Kern F, Genies C, Jacques C, Najjar A, Schepky A, Marx U, Kühnl J, Hewitt NJ

     

    2022, Biomaterials and Biosystems , Vol. 7, Setup of human liver-chips integrating 3D models, microwells and a standardized microfluidic platform as proof-of-concept study to support drug evaluation

    Cox B, Barton P, Class R, Coxhead H, Delatour C, Gillent E, Henshall J, Isin EM, King L, Valentin JP

     

    2022, Journal of Extracellular Vesicles, Vol. 11, A human kidney and liver organoid-based multi-organ-on-a-chip model to study the therapeutic effects and biodistribution of mesenchymal stromal cell-derived extracellular vesicles

    Nguyen VVT, Ye S, Gkouzioti V, van Wolferen ME, Yengej FY, Melkert D, Siti S, de Jong B, Besseling PJ, Spee B, van der Laan LJW, Horland R, Verhaar MC, van Balkom BWM

     

    2022, Cells, Vol. 11, A Human Stem Cell-Derived Brain-Liver Chip for Assessing Blood-Brain-Barrier Permeation of Pharmaceutical Drugs

    Koenig L, Ramme AP, Faust D, Mayer M, Fl?tke T, Gerhartl A, Brachner A, Neuhaus W, Appelt-Menzel A, Metzger M, Marx U, Dehne EM

     

    2022, Pharmaceutics, Vol. 14, Proof-of-Concept Organ-on-Chip Study: Topical Cinnamaldehyde Exposure of Reconstructed Human Skin with Integrated Neopapillae Cultured under Dynamic Flow
    Vahav I, Thon M, van den Broek LJ, Spiekstra SW, Ata? B, Lindner G, Schimek K, Marx U, Gibbs S

     

    2022, ALTEX, A microfluidic thyroid-liver platform to assess chemical safety in humans
    Kühnlenz J, Karwelat D, Steger-Hartmann T, Raschke M, Bauer S, Vural ?, Marx U, Tinwell H, Bars R

     

    2022, Frontiers in Toxicology, A Multi-Organ-on-Chip Approach to Investigate How Oral Exposure to Metals Can Cause Systemic Toxicity Leading to Langerhans Cell Activation in Skin
    Koning JJ, Rodrigues Neves CT, Schimek K, Thon M, Spiekstra SW, Waaijman T, de Gruijl TD, Gibbs S

     

    2021, Drug Testing and Analysis, Early view, Organ-on-a-chip: Determine feasibility of a human liver microphysiological model to assess long-term steroid metabolites in sports drug testing
    G?rgens C, Ramme AP, Guddat S, Schrader Y, Winter A, Dehne EM, Horland R, Thevis M

     

    2021, Science, Vol. 373, Human microphysiological systems for drug development
    Roth A, MPS-WS Berlin 2019

     

    2021, Frontiers in Medicine, Vol. 8, An Individual Patient's "Body" on Chips – How Organismoid Theory Can Translate Into Your Personal Precision Therapy Approach
    Marx U, Accastelli E, David R, Erfurth H, Koenig L, Lauster R, Ramme AP, Reinke P, Volk HD, Winter A, Dehne EM

     

    2021, Stem Cell Research, Vol. 53, Generation of two additional integration-free iPSC lines from related human donors
    Ramme AP, Faust D, Koenig L, Nguyen N, Marx U
    Cell line repository/bank: Human Pluripotent Stem Cell Registry (hPSCreg)

     

    2021, Journal of Applied Toxicology, Early view, Demonstration of the first‐pass metabolism in the skin of the hair dye, 4‐amino‐2‐hydroxytoluene, using the Chip2 skin–liver microphysiological model
    Tao TP, Brandmair K, Gerlach S, Przibilla J, Géniès C, Jacques‐Jamin C, Schepky A, Marx U, J. Hewitt N, Maschmeyer I, Kühnl J

     

    2021, Toxicology, Vol. 448, Characterization of application scenario-dependent pharmacokinetics and pharmacodynamic properties of permethrin and hyperforin in a dynamic skin and liver multi-organ-chip model
    Kühnl J, Tao TP, Brandmair K, Gerlach S, Rings T, Müller-Vieira U, Przibilla J, Genies C, Jaques-Jamin C, Schepky A, Marx U, J. Hewitt N, Maschmeyer I

     

    2020, TissUse White Paper, Multi-Organ Microphysiological Systems are Poised for Expansive Integration
     

    2020, Scientific reports. Vol. 10, Repeated dose multi-drug testing using a microfluidic chip-based coculture of human liver and kidney proximal tubules equivalents
    Lin N, Zhou X, Geng X, Drewell C, Hübner J, Li Z, Zhang Y, Xue M, Marx U, Li B

     

    2020, In Vitro Cellular & Developmental Biology – Animal, The microfollicle: a model of the human hair follicle for in vitro studies
    Ata? B, Kiss FM, Lam T, Fauler B, Edler C, Hu P, Tao TP, J?dicke M, Rütschle I, Azar RP, Youngquist S, Mielke T, Marx U, Lauster R, Lindner G, DiColandrea T

     

    2020, International Journal of Pharmaceutics, Vol. 589, Toxicity of topically applied drugs beyond skin irritation: Static skin model vs. Two organs-on-a-chip
    Tavares RSN, Tao TP, Maschmeyer I, Maria-Engler SS, Sch?fer-Korting M, Winter A, Zoschke C, Lauster R, Marx U, Gaspar LR

     

    2020, Advanced Science, Metal‐Specific Biomaterial Accumulation in Human Peri‐Implant Bone and Bone Marrow
    Schoon J, Hesse B, Rakow A, Ort MJ, Lagrange A, Jacobi D, Winter A, Huesker K, Reinke S, Cotte M,Tucoulou R, Marx U, Perka C, Duda GN, Geissler S

     

    2020, Human Reproduction, Vol. 35, A multi-organ-chip co-culture of liver and testis equivalents: a first step toward a systemic male reprotoxicity model
    Baert Y, Ruetschle I, Cools W, Oehme A, Lorenz A, Marx U, Goossens E, Maschmeyer I

     

    2020, Scientific Reports, Human multi-organ chip co-culture of bronchial lung culture and liver spheroids for substance exposure studies
    Schimek K, Frentzel S, Luettich K, Bovard D, Rütschle I, Boden L, Rambo F, Erfurth H, Dehne EM, Winter A, Marx U, Hoeng J

     

    2020, Journal of Tissue Engineering and Regenerative Medicine, Vol. 14, Reconstructed human skin shows epidermal invagination towards integrated neopapillae indicating early hair follicle formation in vitro
    Vahav I, van den Broek LJ, Thon M, Monsuur HN, Spiekstra SW, Atac B, Scheper RJ, Lauster R, Lindner G, Marx U,

    技術文章

    技術資料

    廠商推薦產(chǎn)品

    在線留言

    換一張?
    取消
    精品无码在线,九九精品综合人人爽人妻,亚洲一区在线尤物,伊人网在线18禁
  • <strike id="cseqw"><noscript id="cseqw"></noscript></strike>
  • <strike id="cseqw"></strike>